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Critical relaxation in two-dimensional random-bond Potts models
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We present an extensive Monte Carlo study of the critical relaxation for the two-dimensional square lattice
random-bond Potts model using Swendsen-Wang cluster flipping. The integrated autocorrelatienigime
calculated and the dynamic exponeris estimated by analyzing the size dependence ¥fe find thatz~0
in agreement with estimates for the two-dimensional Ising model. We also present a study of the size depen-
dence of the dynamic behavior of the pure eight-state Potts model which undergoes a first-order transition. The
scaling is describable by the product of an exponential times a power law, a behavior which is quite different
from that found in the random-bond ca$81063-651X96)05611-3

PACS numbe(s): 64.60.Ht, 75.10.Hk, 05.70.Jk, 02.70.Lq

[. INTRODUCTION and it was later shown that the data were consistent with a
logarithmic divergence, suggesting that=0 [13,16,17.
Extensive research carried out over the last few decadeQuite limited numerical results with cluster dynamics have
has led to a quite good understanding of static behavior nedreen published for the Potts modél7—19. For first-order
the phase transition for many spin models. In two dimen4ransitions the tunneling time between coexisting states also
sions ferromagnetig-state Potts models are known to ex- increases as the transition is approached, thus leading to long
hibit first-order phase transitions if the number of statesrelaxation times. Unfortunately, the dynamic behavior for the
g>4. Recent work has shown, however, that if there arepure eight-state Potts model as it undergoes a first-order
randomly distributed ferromagnetic bonds of two differentphase transition is not exactly known. A pure exponential
strengths, the transition becomes second drtled] and the  slowing down for a first-order phase transition was first sug-
static behavior(at least forq=8) has exponents which are gested20]; however, the product of an exponential times a
indistinguishable from those of the Ising modi8l4]. Time  power law was later founfil8] for the q=10 Potts model.
dependent properties of spin models in the vicinity of their The purpose of this study is to numerically determine,
transition points are generally less well known than theirusing the Swendsen-Wang algorithm, the dynamic behavior
static counterparts, although substantial progress has beahthe transition point for the two-dimensior@D) random-
made in recent years. Nonetheless, there is no informatiohond Potts model as well as for the pure 2D Potts model so
available about any changes which might occur in the “criti- that the effects of bond randomness on the dynamic behavior
cal relaxation” ofg-state Potts models when random bondscan be determined by comparing the correlation times for
are added, although the changes in the static behavior sugeth models. A comparison between the data for the random-
gest that significant modification might occur in the time bond Potts model and the 2D Ising model will also be made
dependent properties as well. to determine if the dynamic and static universality classes
For systems exhibiting second-order transitions, criticalagree. In the following sections, we first provide some theo-
slowing down is described in terms of a dynamic critical retical background related to the dynamics of the Monte
exponentz, which describes the divergence of the characterCarlo methods, followed by a brief description of the data
istic relaxation timer as the critical poinf is approached, analysis techniques. In Sec. IV we then present and discuss
the simulation details and results. A summary of this study is
roct??, (1) given in the last section.

wheret=|1—T/T,|. For local spin-flip dynamics with no
conservation lawsz~2 [5-9] for many spin systems. Thus
single-spin-flip Monte Carlo investigations of phase transi- The “dynamics” of stochastic mode[21] can be studied
tions have been hampered by critical slowing dojt@]. by determining the normalized autocorrelation function
Recently developed cluster updating algorithih$—13 can  @4(t) [22],

dramatically reduce critical slowing down and therefore are

more efficient in studying phase transitions for many spin (A(0)A(L))—(A)?

systems. For this reason we used a modified cluster-flipping ea(t)= > -, 2
algorithm in our previous study of static behavior in the (AT —=(A)

random-bond Potts model. Theoretical predictions for the

cluster dynamics critical exponent are sparse, although a rigvhere the average is over Monte Carlo steps and thettisie
orous bound oz for the Swendsen-Wang algoritirhl] for ~ measured in units of one sweep through the entire lattice for
Potts models has been derividdl]. For the two-dimensional the cluster algorithmA(t) is some observable, usually cho-
Ising model, simulations indicate thatis quite small: initial ~ sen to be energy or magnetization. The time dependence of
results suggestez~3 [11,15, further work[12] gavez=31, oa(t) can be expressd@3], in general, as

II. BACKGROUND
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It is believed that there is only one relevant time scale in

critical dynamics just as there is only one length scale, the ~ ¢.(0
correlation length, in the statics. Therefore the long time be-

havior of any correlation function will be determined by the
largestr=max 7;]. This defines the exponential autocorrela-

tion time 7,,,= 7. Another characteristic time, the integrated
autocorrelation timer,,, is defined as

_ 0.1 : : ; . &
Tint_; o(1). 4 o 6 12 18 24 30

(Thousands)

If ¢(t) decays approximately as a pure exponential, then
Texp™ Tinf > DUt IN generalr,, may be much larger than,. 7
Note thatr,,, determines the statistical errors in Monte Carlo (o)
measurements ofA) once equilibrium has been attained.
The total run length has to be much larger thgnin order to
produce reliable information about thermodynamic proper- ¢ ()
ties.

The autocorrelation time for an infinitd-dimensional 0.10F
system undergoing a second-order phase transition is ex-
pected to diverge as

1.00 &

=&, ©)

whereas for a finite system at the infinite volume transition 0.01

point, dynamic finite-size scalin@4] predicts © 24 48 72 96 120

T L?, (6) t

. . . FIG. 1. Plots of typical time dependence of the autocorrelation
where the dynamic critical exponentis ~2 for local algo-  fnctions. (a) L =64, random-bond Potts model, averaging over 30
rithms without conservation laws. For a finite system underyong configurations(b) L=64 pure Potts model, averaging over

going a first-order phase transition it was suggested that th@e configurations. Time is measured in Monte Carlo steps per site.
autocorrelation time grows 448]

N
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We have performed Monte Carlo simulations for tfe8
random-bond Potts model on a two-dimensional square lafyhereN is the total number of bond configurations simulated
tice with periodic boundary conditions for the sizeL. For each size, there were at least 30 bond
distributions simulated and used in the configurational aver-
age over randomness to ensure that the bulk properties were
correctly determined.

We have also carried out Swendsen-Wang simulations for
where the ratio between the two bond strengths wasghe pure eight-state Potts model on lax L square lattice
r=K./K,=10. with periodic boundary conditions for ¥ <64. Because

The simulations were carried out using the Swendsenwe found much longer relaxation times than for the random-
Wang algorithm on a cluster of IBM RS/6000 workstations.bond system, for these runs the firs? Heps in each simu-
Data were obtained at the infinite-lattice transition couplinglation were discarded. For each size, we performed five in-
[25] (K$=0.31265568...) for lattices with linear size dependent simulations; each of them has a run length greater
L=16—84. In each simulation, the initiab8L0° steps were than 3<10’ steps. The autocorrelation timegg(t) and
discarded for equilibration. At each time step, i.e., a sweeppy(t), were measured at the infinite-lattice critical point
for entire lattice, the energ§ and the number of the sites in [25] [Kc=In(1+/q)=1.342 4% . . .].
the maximum occupied statd are accumulated. The auto-  Figure 1 is a log-log plot showing the general features of
correlation times,pg(t) and ¢y (t), were computed over ¢@,(t). A smooth, linear regime extends fromt' to some
samples of at least #0Monte Carlo sweeps per lattice size. t=t,,,,, beyond which the data begin oscillating or varying
The configurational averages were performed for the autocabruptly, and meaningful information is difficult to extract
correlation times, such that from them. For the pure mode(t) varies slightly for dif-

H=—2 Kjjoi0, (8



42 S. CHEN AND D. P. LANDAU 55

14000
10000 F
E
E
7 T
1000 7000
100 E
50 0 s
70
L L
FIG. 2. Log-log plot of the energy autocorrelation tirfreea- FIG. 3. The energy autocorrelation tinfmeasured in Monte

sured in Monte Carlo steps per gifer the pure Potts model. Errors  Carlo steps per sijdor the pure Potts model fitted by a pure expo-
in the individual points are smaller than the symbol size. The solichential.
curves are fits to Eq.7) and the dashed line is a linear fit.

ponential function is not suitable for describing the dynamics
of this system either.
A theoretical computation along the lines of RE20]

ferent initial configurations with the sanie andt’<t,,;,
thus mostp(t) can be well fitted by a single exponential term

—t/7qy.- : .
(ale,t,fll)’ s&)me@(t;tzzcalr;hbe fgt?d bty tWtO 2)(()pt(') nential tlerms suggests thab is twice the interface tensioar between the
(a.e anda,e with -, beéing ten 1o Imes as Jarge coexisting phases. For thg=10 Potts model estimates are

as 7,, anda,/a;<0.05. For the random-bond modej(t) 18] a~1.5 andb~0.09 for Swendsen-Wan@W) d
. : ' ; . . - ynam-
has larger fluctuations for different bond configurations. Wei[cs, anda~2.1,b~0.09 for the Metropolis method. The val-

fitted ¢(t) with two exponential terms, with the result that ues ofb agree with 2 for =8, 2 is ~0.045[26] and
7>47, anda,/a, <0.1. Fort—e, 7, governs the behavior of - _ 4 ¢, q=10 [26-28. Therefore the size dependence of
¢(1), 7 iS thus used ag, in later calculations for both pure the autocorrelation time for the system undergoing a first-

and random systems. o ; ;
) . . order transition might be written as
The data for the integrated autocorrelation time were ob- 9

tained by applying Eq(4) in its original form and using the

truncation approximatiofl6]. oL e2old ! 13
t=tmax—1
Tint™ 2’1 ¢+ R(tma), (10" \whered is the dimension of the lattice. The quantity2?~*

is just the free-energy barrig29] between the maximum and
with minimum of the probability distribution of the energy. When
the free-energy barrier is zero for &l| indicating a second-
R(tm) = @ (o) 1 (11) order phase transition, E¢L3) reverts to a power-law func-
ma M 1 —K(tmax) tion. The dynamic critical exponeatfor local dynamics was
estimated to be=2.17 forq=2,3,4 Potts model5]. A com-
K(thay =€~ Urexp, (12 parison of these results tofor g=10 mentioned above sug-
] ) ) gests thata might have the same value asfor nonlocal
We used 7oy, instead of ¢(tmay/¢(tmax—1) in calculating  gynamics, which implies that has nog dependencés,3d.
K(tmay to reduce the error due to fluctuations in the data. The value of the powea clearly depends on the algorithm
used in the simulations.
lIl. RESULTS AND DISCUSSION In Fig. 4@ we show a semilog plot of the results for

E E :
The results for the size dependence of the energy correldint 3N 7ex, @s functions ofl. for the random-bond Potts
tion times for the pure Potts model are shown in Fig. 2. Themodel. The data can_be V\{eII fitted by a straight line indicat-
curvature of the best ficompared with the linear fit shown N9 that the correlation times for the random-bond Potts

by the dashed lineto the data on the log-log scale Suggestsmodel can be described by the logarithmic behavior expected

that a simple power law does not provide a correct descrip©” the two-dimensional Ising modg16,17. We also tried

tion of the size dependence of the relaxation of this systenf© fit the data on alog-log plot, shown in Figb}. The resglt
The correlation time is compatible with the modified expo-9ave Ethe value of as 0.25-0.04 and 0.32.0.04 from 7y,
nential (solid lineg of Eq. (7) with a=1.20 andb=0.05. A  and 7, respectively. For both logarithmic and power-law
simple exponential fit of the dependence of the correlation fits, the goodness of fits were0.8 and 0.2 for ther, and
time is shown in Fig. 3; the substantial deviations of the data-gxp, respectively. These values are also in agreement with
from the fitted curve for large sizes indicate that a pure exthe work of[12,17] for the two-dimensional Ising model.
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FIG. 5. (a) Semilog plot, andb) log-log plot for the magneti-
zation autocorrelation tim@gneasured in Monte Carlo steps per kite

FIG. 4. Semil lot, and(b) log-I lot of th i . '
(& Semilog plot, and(b) log-log plot of the energy for the random-bond Potts model. Solid lines are linear fits.

autocorrelation timgmeasured in Monte Carlo steps per siter
ther =10 random Potts model. Solid lines are linear fits.
[16,17 for sizes up to 512. For simulations in a random
The difficulty in distinguishing between a logarithmic and system, where fluctuations of the thermodynamic properties
a power law is substantial when the “power” is small. To gver bond configurations are large, it is even more difficult to
see how this happens, consider the following Taylor seriesgonclusively differentiate between a logarithm and a small
« 2 o value ofz<0.3.
L*=1+y| = In L+ (In L)24--- + —(nL)"+---], Figure 5 shows a semilog plot for the results of #H
1 2! n: 14 and rQ"Xp for the random-bond Potts model. The behavior of
(14) ™ is similar to that of7: both can be described by a loga-
wherey=1/Ine. If x<1, the higher-order term of can be rithmic law. However, when we fitted the data to a power
omitted, therefore law, we foundz~0.40+0.04 and~0.38+0.04 for 7}/, and
Tg(p, respectively. It seems thdd, which is not a full sym-
L*=1+yxIn L. (15 metry magnetization, results in slower decorrelation and thus
larger statistical errors in the data.
In principle, we can distinguish a power law from a loga- A comparison of integrated correlation times for the
rithm by observing the trend of the data towards lakgdf random-bond Potts model and the pure Potts model is shown
the slope of the successive points in the log-log plot dein Fig. 6. The result from Ref[17] for the Ising square
creases with., we may conclude the function is logarithmic lattice is also included for comparison. Clearly the random-
instead of a power law; however, the decrease may disappeagess has a dramatic effect on the time dependent behavior.
at largeL, resulting in a nonzero value af The autocorre- Upon the introduction of the bond randomness, the correla-
lation time for theq=2 Potts model was investigated using tion times become much smaller and grow more slowly with
the SW algorithm[17] with the result being that~0.3 for  increasing.. Although the autocorrelation times for the ran-
rﬁt if the fits were “only” performed forL<128. The loga- dom Potts model are larger than those for the Ising model,
rithmic behavior of the magnetizatior},, was “confirmed”  they appear to have quite similar size dependence.
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. pure trast to the modified exponential behavior of a pure model.
10000 k ) This difference fits nicely into the scenario obtained from the
¢+ random statics, i.e., the bond randomness induces a second-order
4+ Ising transition in a system which would undergo a first-order tran-
1000 k sition without randomness. The dynamic critical behavior es-
£ ° timated for the random-bond Potts model is in agreement
T with that for the 2D Ising model. This could be expected
100F ® from the dynamic scaling law31] or the behavior of the
cluster distributiorf32,33, both of which lead to the relation
. . o o e between the dynamic critical exponent and the static expo-
10F nents. Just as in the studi§7] of critical relaxation in the
N A A A 4 two-dimensional pure Ising model, both a power lawth a
small powey and a logarithm gave rather good fits. To un-
1 ' ambiguously differentiate between a small power and a loga-
10 100 rithm, we would need both to simulate more bond configu-
L rations for each size to reduce the fluctuation in the existing
data and to consider much larger lattices to search for re-
sidual corrections to finite-size scaling. Since the CPU time
already spent on the pure model was at least 1500 h, and
more than 2000 h were needed for the random-bond Potts
model, the task of improving the resolution noticeably will
IV. SUMMARY be formidable.

FIG. 6. Comparison of the autocorrelation tim@seasured in
Monte Carlo steps per sjtdor the pure and random-bond Potts
models, and the Ising model on a log-log scale.

Critical relaxation in the random-bong=8 Potts model
as well as the purg=8 Potts model has been studied via
extensive Monte Carlo simulations. Quite substantial differ- This research was supported in part by NSF Grant No.
ences are found: The autocorrelation times of the randomPMR-9405018. We are indebted to A. Ferrenberg for many
bond system obey power-law scaling, but wigh=0) in con-  helpful discussions.
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