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Critical relaxation in two-dimensional random-bond Potts models

S. Chen and D. P. Landau
Center for Simulational Physics, The University of Georgia, Athens, Georgia 30602

~Received 11 July 1996!

We present an extensive Monte Carlo study of the critical relaxation for the two-dimensional square lattice
random-bond Potts model using Swendsen-Wang cluster flipping. The integrated autocorrelation timet is
calculated and the dynamic exponentz is estimated by analyzing the size dependence oft. We find thatz'0
in agreement with estimates for the two-dimensional Ising model. We also present a study of the size depen-
dence of the dynamic behavior of the pure eight-state Potts model which undergoes a first-order transition. The
scaling is describable by the product of an exponential times a power law, a behavior which is quite different
from that found in the random-bond case.@S1063-651X~96!05611-5#

PACS number~s!: 64.60.Ht, 75.10.Hk, 05.70.Jk, 02.70.Lq
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I. INTRODUCTION

Extensive research carried out over the last few deca
has led to a quite good understanding of static behavior n
the phase transition for many spin models. In two dime
sions ferromagneticq-state Potts models are known to e
hibit first-order phase transitions if the number of sta
q.4. Recent work has shown, however, that if there
randomly distributed ferromagnetic bonds of two differe
strengths, the transition becomes second order@1–4# and the
static behavior~at least forq58! has exponents which ar
indistinguishable from those of the Ising model@3,4#. Time
dependent properties of spin models in the vicinity of th
transition points are generally less well known than th
static counterparts, although substantial progress has
made in recent years. Nonetheless, there is no informa
available about any changes which might occur in the ‘‘cr
cal relaxation’’ ofq-state Potts models when random bon
are added, although the changes in the static behavior
gest that significant modification might occur in the tim
dependent properties as well.

For systems exhibiting second-order transitions, criti
slowing down is described in terms of a dynamic critic
exponentz, which describes the divergence of the charac
istic relaxation timet as the critical pointTc is approached,

t}tzn, ~1!

where t5u12T/Tcu. For local spin-flip dynamics with no
conservation laws,z'2 @5–9# for many spin systems. Thu
single-spin-flip Monte Carlo investigations of phase tran
tions have been hampered by critical slowing down@10#.
Recently developed cluster updating algorithms@11–13# can
dramatically reduce critical slowing down and therefore
more efficient in studying phase transitions for many s
systems. For this reason we used a modified cluster-flipp
algorithm in our previous study of static behavior in t
random-bond Potts model. Theoretical predictions for
cluster dynamics critical exponent are sparse, although a
orous bound onz for the Swendsen-Wang algorithm@11# for
Potts models has been derived@14#. For the two-dimensiona
Ising model, simulations indicate thatz is quite small: initial
results suggestedz'1

3 @11,15#, further work@12# gavez51
4,
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and it was later shown that the data were consistent wit
logarithmic divergence, suggesting thatz'0 @13,16,17#.
Quite limited numerical results with cluster dynamics ha
been published for the Potts model@17–19#. For first-order
transitions the tunneling time between coexisting states
increases as the transition is approached, thus leading to
relaxation times. Unfortunately, the dynamic behavior for t
pure eight-state Potts model as it undergoes a first-o
phase transition is not exactly known. A pure exponen
slowing down for a first-order phase transition was first su
gested@20#; however, the product of an exponential times
power law was later found@18# for theq510 Potts model.

The purpose of this study is to numerically determin
using the Swendsen-Wang algorithm, the dynamic beha
at the transition point for the two-dimensional~2D! random-
bond Potts model as well as for the pure 2D Potts mode
that the effects of bond randomness on the dynamic beha
can be determined by comparing the correlation times
both models. A comparison between the data for the rand
bond Potts model and the 2D Ising model will also be ma
to determine if the dynamic and static universality clas
agree. In the following sections, we first provide some th
retical background related to the dynamics of the Mo
Carlo methods, followed by a brief description of the da
analysis techniques. In Sec. IV we then present and dis
the simulation details and results. A summary of this study
given in the last section.

II. BACKGROUND

The ‘‘dynamics’’ of stochastic models@21# can be studied
by determining the normalized autocorrelation functi
wA(t) @22#,

wA~ t !5
^A~0!A~ t !&2^A&2

^A2&2^A&2
, ~2!

where the average is over Monte Carlo steps and the timet is
measured in units of one sweep through the entire lattice
the cluster algorithm.A(t) is some observable, usually cho
sen to be energy or magnetization. The time dependenc
wA(t) can be expressed@23#, in general, as
40 © 1997 The American Physical Society
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55 41CRITICAL RELAXATION IN TWO-DIMENSIONAL RANDOM - . . .
wA~ t !5(
i
aie

2t/t i. ~3!

It is believed that there is only one relevant time scale
critical dynamics just as there is only one length scale,
correlation length, in the statics. Therefore the long time
havior of any correlation function will be determined by th
largestt5max@ti#. This defines the exponential autocorre
tion time texp5t. Another characteristic time, the integrate
autocorrelation timetint , is defined as

t int5(
1

`

w~ t !. ~4!

If w(t) decays approximately as a pure exponential, th
texp'tinf ; but in generaltexp may be much larger thantint .
Note thattint determines the statistical errors in Monte Ca
measurements of̂A& once equilibrium has been attaine
The total run length has to be much larger thantint in order to
produce reliable information about thermodynamic prop
ties.

The autocorrelation time for an infinited-dimensional
system undergoing a second-order phase transition is
pected to diverge as

t;jz, ~5!

whereas for a finite system at the infinite volume transit
point, dynamic finite-size scaling@24# predicts

t}Lz, ~6!

where the dynamic critical exponentz is ;2 for local algo-
rithms without conservation laws. For a finite system und
going a first-order phase transition it was suggested that
autocorrelation time grows as@18#

t}LaebL. ~7!

We have performed Monte Carlo simulations for theq58
random-bond Potts model on a two-dimensional square
tice with periodic boundary conditions

H52( Ki js is j , ~8!

where the ratio between the two bond strengths w
r5K1/K2510.

The simulations were carried out using the Swends
Wang algorithm on a cluster of IBM RS/6000 workstation
Data were obtained at the infinite-lattice transition coupl
@25# ~K 1

C50.312 655 667 . . . ! for lattices with linear size
L516–84. In each simulation, the initial 53103 steps were
discarded for equilibration. At each time step, i.e., a swe
for entire lattice, the energyE and the number of the sites i
the maximum occupied stateM are accumulated. The auto
correlation times,wE(t) and wM(t), were computed ove
samples of at least 106 Monte Carlo sweeps per lattice siz
The configurational averages were performed for the a
correlation times, such that
n
e
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N

t i , ~9!

whereN is the total number of bond configurations simulat
for the sizeL. For each size, there were at least 30 bo
distributions simulated and used in the configurational av
age over randomness to ensure that the bulk properties
correctly determined.

We have also carried out Swendsen-Wang simulations
the pure eight-state Potts model on anL3L square lattice
with periodic boundary conditions for 12<L<64. Because
we found much longer relaxation times than for the rando
bond system, for these runs the first 105 steps in each simu
lation were discarded. For each size, we performed five
dependent simulations; each of them has a run length gre
than 33107 steps. The autocorrelation times,wE(t) and
wM(t), were measured at the infinite-lattice critical poi
@25# @KC5ln~11Aq!51.342 454 . . . #.

Figure 1 is a log-log plot showing the general features
wA(t). A smooth, linear regime extends fromt5t8 to some
t5tmax, beyond which the data begin oscillating or varyin
abruptly, and meaningful information is difficult to extra
from them. For the pure model,w(t) varies slightly for dif-

FIG. 1. Plots of typical time dependence of the autocorrelat
functions.~a! L564, random-bond Potts model, averaging over
bond configurations;~b! L564 pure Potts model, averaging ove
five configurations. Time is measured in Monte Carlo steps per
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42 55S. CHEN AND D. P. LANDAU
ferent initial configurations with the sameL and t8!tmax,
thus mostw(t) can be well fitted by a single exponential ter
(a1e

2t/t1); somew(t) can be fitted by two exponential term
~a1e

2t/t1 anda2e
2t/t2 with t1 being ten to 20 times as larg

as t2, anda2/a1,0.05!. For the random-bond model,w(t)
has larger fluctuations for different bond configurations. W
fitted w(t) with two exponential terms, with the result th
t1.4t2 anda2/a1,0.1. Fort→`, t1 governs the behavior o
w(t), t1 is thus used astexp in later calculations for both pure
and random systems.

The data for the integrated autocorrelation time were
tained by applying Eq.~4! in its original form and using the
truncation approximation@16#.

t int5 (
t51

t5tmax21

w~ t !1R~ tmax!, ~10!

with

R~ tmax!5w~ tmax!
1

12k~ tmax!
, ~11!

k~ tmax!5e21/texp. ~12!

We usedtexp instead ofw~tmax!/w~tmax21! in calculating
k~tmax! to reduce the error due to fluctuations in the data

III. RESULTS AND DISCUSSION

The results for the size dependence of the energy corr
tion times for the pure Potts model are shown in Fig. 2. T
curvature of the best fit~compared with the linear fit show
by the dashed line! to the data on the log-log scale sugge
that a simple power law does not provide a correct desc
tion of the size dependence of the relaxation of this syst
The correlation time is compatible with the modified exp
nential ~solid lines! of Eq. ~7! with a51.20 andb50.05. A
simple exponential fit of theL dependence of the correlatio
time is shown in Fig. 3; the substantial deviations of the d
from the fitted curve for large sizes indicate that a pure

FIG. 2. Log-log plot of the energy autocorrelation time~mea-
sured in Monte Carlo steps per site! for the pure Potts model. Error
in the individual points are smaller than the symbol size. The s
curves are fits to Eq.~7! and the dashed line is a linear fit.
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ponential function is not suitable for describing the dynam
of this system either.

A theoretical computation along the lines of Ref.@20#
suggests thatb is twice the interface tensions between the
coexisting phases. For theq510 Potts model estimates ar
@18# a;1.5 andb;0.09 for Swendsen-Wang~SW! dynam-
ics, anda;2.1,b;0.09 for the Metropolis method. The va
ues ofb agree with 2s: for q58, 2s is ;0.045 @26# and
;0.1 for q510 @26–28#. Therefore the size dependence
the autocorrelation time for the system undergoing a fi
order transition might be written as

t}cLae2sLd21
, ~13!

whered is the dimension of the lattice. The quantity 2sLd21

is just the free-energy barrier@29# between the maximum an
minimum of the probability distribution of the energy. Whe
the free-energy barrier is zero for allL, indicating a second-
order phase transition, Eq.~13! reverts to a power-law func
tion. The dynamic critical exponentz for local dynamics was
estimated to be'2.17 forq52,3,4 Potts models@6#. A com-
parison of these results toa for q510 mentioned above sug
gests thata might have the same value asz for nonlocal
dynamics, which implies thatz has noq dependence@6,30#.
The value of the powera clearly depends on the algorithm
used in the simulations.

In Fig. 4~a! we show a semilog plot of the results fo
t int
E and texp

E as functions ofL for the random-bond Potts
model. The data can be well fitted by a straight line indic
ing that the correlation times for the random-bond Po
model can be described by the logarithmic behavior expec
for the two-dimensional Ising model@16,17#. We also tried
to fit the data on a log-log plot, shown in Fig. 4~b!. The result
gave the value ofz as 0.2560.04 and 0.3260.04 from t int

E

and texp
E , respectively. For both logarithmic and power-la

fits, the goodness of fits were;0.8 and 0.2 for thet int
E and

texp
E , respectively. These values are also in agreement w
the work of @12,17# for the two-dimensional Ising model.

d

FIG. 3. The energy autocorrelation time~measured in Monte
Carlo steps per site! for the pure Potts model fitted by a pure exp
nential.
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55 43CRITICAL RELAXATION IN TWO-DIMENSIONAL RANDOM - . . .
The difficulty in distinguishing between a logarithmic an
a power law is substantial when the ‘‘power’’ is small. T
see how this happens, consider the following Taylor seri

Lx511yS x1 ln L1
x2

2!
~ ln L !21•••1

xn

n!
~ ln L !n1••• D ,

~14!

wherey51/ln e. If x!1, the higher-order term ofx can be
omitted, therefore

Lx511yx ln L. ~15!

In principle, we can distinguish a power law from a log
rithm by observing the trend of the data towards largeL. If
the slope of the successive points in the log-log plot
creases withL, we may conclude the function is logarithm
instead of a power law; however, the decrease may disap
at largeL, resulting in a nonzero value ofz. The autocorre-
lation time for theq52 Potts model was investigated usin
the SW algorithm@17# with the result being thatz'0.3 for
t int
E if the fits were ‘‘only’’ performed forL<128. The loga-
rithmic behavior of the magnetizationtint was ‘‘confirmed’’

FIG. 4. ~a! Semilog plot, and~b! log-log plot of the energy
autocorrelation time~measured in Monte Carlo steps per site! for
the r510 random Potts model. Solid lines are linear fits.
:

-

ar

@16,17# for sizes up to 512. For simulations in a rando
system, where fluctuations of the thermodynamic proper
over bond configurations are large, it is even more difficult
conclusively differentiate between a logarithm and a sm
value ofz,0.3.

Figure 5 shows a semilog plot for the results of thet int
M

andtexp
M for the random-bond Potts model. The behavior

tM is similar to that oftE: both can be described by a loga
rithmic law. However, when we fitted the data to a pow
law, we foundz;0.4060.04 and;0.3860.04 for t int

M and
texp
M , respectively. It seems thatM , which is not a full sym-
metry magnetization, results in slower decorrelation and t
larger statistical errors in the data.

A comparison of integrated correlation times for th
random-bond Potts model and the pure Potts model is sh
in Fig. 6. The result from Ref.@17# for the Ising square
lattice is also included for comparison. Clearly the rando
ness has a dramatic effect on the time dependent beha
Upon the introduction of the bond randomness, the corre
tion times become much smaller and grow more slowly w
increasingL. Although the autocorrelation times for the ra
dom Potts model are larger than those for the Ising mo
they appear to have quite similar size dependence.

FIG. 5. ~a! Semilog plot, and~b! log-log plot for the magneti-
zation autocorrelation time~measured in Monte Carlo steps per sit!
for the random-bond Potts model. Solid lines are linear fits.
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44 55S. CHEN AND D. P. LANDAU
IV. SUMMARY

Critical relaxation in the random-bondq58 Potts model
as well as the pureq58 Potts model has been studied v
extensive Monte Carlo simulations. Quite substantial diff
ences are found: The autocorrelation times of the rand
bond system obey power-law scaling, but with~z'0! in con-

FIG. 6. Comparison of the autocorrelation times~measured in
Monte Carlo steps per site! for the pure and random-bond Pot
models, and the Ising model on a log-log scale.
e

a

M
er
,

-
-

trast to the modified exponential behavior of a pure mod
This difference fits nicely into the scenario obtained from t
statics, i.e., the bond randomness induces a second-o
transition in a system which would undergo a first-order tra
sition without randomness. The dynamic critical behavior
timated for the random-bond Potts model is in agreem
with that for the 2D Ising model. This could be expect
from the dynamic scaling law@31# or the behavior of the
cluster distribution@32,33#, both of which lead to the relation
between the dynamic critical exponent and the static ex
nents. Just as in the study@17# of critical relaxation in the
two-dimensional pure Ising model, both a power law~with a
small power! and a logarithm gave rather good fits. To u
ambiguously differentiate between a small power and a lo
rithm, we would need both to simulate more bond config
rations for each size to reduce the fluctuation in the exist
data and to consider much larger lattices to search for
sidual corrections to finite-size scaling. Since the CPU ti
already spent on the pure model was at least 1500 h,
more than 2000 h were needed for the random-bond P
model, the task of improving the resolution noticeably w
be formidable.
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